3.85 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))}{x^3} \, dx\)

Optimal. Leaf size=311 \[ -\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {c x-1} \sqrt {c x+1}}+\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {c x-1} \sqrt {c x+1}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-1/2*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^2-3/2*c^2*d*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)-1/2*b*c*d*(
-c^2*d*x^2+d)^(1/2)/x/(c*x-1)^(1/2)/(c*x+1)^(1/2)+b*c^3*d*x*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+3
*c^2*d*(a+b*arccosh(c*x))*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(
1/2)-3/2*I*b*c^2*d*polylog(2,-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^
(1/2)+3/2*I*b*c^2*d*polylog(2,I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^
(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.80, antiderivative size = 323, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5798, 5740, 5743, 5761, 4180, 2279, 2391, 8, 14} \[ -\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {c x-1} \sqrt {c x+1}}+\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (c x+1) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {c x-1} \sqrt {c x+1}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^3,x]

[Out]

-(b*c*d*Sqrt[d - c^2*d*x^2])/(2*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (b*c^3*d*x*Sqrt[d - c^2*d*x^2])/(Sqrt[-1 + c
*x]*Sqrt[1 + c*x]) - (3*c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/2 - (d*(1 - c*x)*(1 + c*x)*Sqrt[d - c^
2*d*x^2]*(a + b*ArcCosh[c*x]))/(2*x^2) + (3*c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])*ArcTan[E^ArcCosh[c*
x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (((3*I)/2)*b*c^2*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, (-I)*E^ArcCosh[c*x]])/
(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (((3*I)/2)*b*c^2*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, I*E^ArcCosh[c*x]])/(Sqrt[-1
 + c*x]*Sqrt[1 + c*x])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5740

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x]
+ (-Dist[(2*e1*e2*p)/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Dist[(b*c*n*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sq
rt[-1 + c*x]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
&& IntegerQ[p - 1/2]

Rule 5743

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 2)), x
] + (-Dist[(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/((m + 2)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[((f*x)^m*(a + b*ArcCo
sh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x] - Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 2)*S
qrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e
1, d2, e2, f, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] |
| EqQ[n, 1])

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^3} \, dx &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {(-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^3} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \frac {-1+c^2 x^2}{x^2} \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \int \frac {\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x} \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (c^2-\frac {1}{x^2}\right ) \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 b c^3 d \sqrt {d-c^2 d x^2}\right ) \int 1 \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \text {sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 i b c^2 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 i b c^2 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 i b c^2 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 i b c^2 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{2 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c^3 d x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {3}{2} c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{2 x^2}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 i b c^2 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.58, size = 500, normalized size = 1.61 \[ \frac {1}{2} \left (3 a c^2 d^{3/2} \log \left (\sqrt {d} \sqrt {d-c^2 d x^2}+d\right )-3 a c^2 d^{3/2} \log (x)-\frac {a d \left (2 c^2 x^2+1\right ) \sqrt {d-c^2 d x^2}}{x^2}+\frac {b d^2 (c x+1) \left (i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )-i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )+i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-i c^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )+c x \sqrt {\frac {c x-1}{c x+1}}+c x \cosh ^{-1}(c x)-\cosh ^{-1}(c x)\right )}{x^2 \sqrt {d-c^2 d x^2}}-\frac {2 b c^2 d \sqrt {d-c^2 d x^2} \left (i \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )-i \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )-c x+c x \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)+\sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)+i \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-i \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )\right )}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^3,x]

[Out]

(-((a*d*(1 + 2*c^2*x^2)*Sqrt[d - c^2*d*x^2])/x^2) - 3*a*c^2*d^(3/2)*Log[x] + 3*a*c^2*d^(3/2)*Log[d + Sqrt[d]*S
qrt[d - c^2*d*x^2]] - (2*b*c^2*d*Sqrt[d - c^2*d*x^2]*(-(c*x) + Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + c*x*S
qrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + I*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - I*ArcCosh[c*x]*Log[1 + I/E
^ArcCosh[c*x]] + I*PolyLog[2, (-I)/E^ArcCosh[c*x]] - I*PolyLog[2, I/E^ArcCosh[c*x]]))/(Sqrt[(-1 + c*x)/(1 + c*
x)]*(1 + c*x)) + (b*d^2*(1 + c*x)*(c*x*Sqrt[(-1 + c*x)/(1 + c*x)] - ArcCosh[c*x] + c*x*ArcCosh[c*x] + I*c^2*x^
2*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - I*c^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*Arc
Cosh[c*x]*Log[1 + I/E^ArcCosh[c*x]] + I*c^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*PolyLog[2, (-I)/E^ArcCosh[c*x]] - I
*c^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*PolyLog[2, I/E^ArcCosh[c*x]]))/(x^2*Sqrt[d - c^2*d*x^2]))/2

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a c^{2} d x^{2} - a d + {\left (b c^{2} d x^{2} - b d\right )} \operatorname {arcosh}\left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^3,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arccosh(c*x))*sqrt(-c^2*d*x^2 + d)/x^3, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^3,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.64, size = 542, normalized size = 1.74 \[ -\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{2 d \,x^{2}}-\frac {a \,c^{2} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{2}+\frac {3 a \,c^{2} d^{\frac {3}{2}} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )}{2}-\frac {3 a \,c^{2} \sqrt {-c^{2} d \,x^{2}+d}\, d}{2}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} d \,\mathrm {arccosh}\left (c x \right ) x^{2}}{\left (c x +1\right ) \left (c x -1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{3} d x}{\sqrt {c x +1}\, \sqrt {c x -1}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} d \,\mathrm {arccosh}\left (c x \right )}{2 \left (c x +1\right ) \left (c x -1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d c}{2 x \sqrt {c x +1}\, \sqrt {c x -1}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \,\mathrm {arccosh}\left (c x \right )}{2 x^{2} \left (c x +1\right ) \left (c x -1\right )}-\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) c^{2} d}{2 \sqrt {c x -1}\, \sqrt {c x +1}}+\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) c^{2} d}{2 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) c^{2} d}{2 \sqrt {c x -1}\, \sqrt {c x +1}}+\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) c^{2} d}{2 \sqrt {c x -1}\, \sqrt {c x +1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^3,x)

[Out]

-1/2*a/d/x^2*(-c^2*d*x^2+d)^(5/2)-1/2*a*c^2*(-c^2*d*x^2+d)^(3/2)+3/2*a*c^2*d^(3/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x
^2+d)^(1/2))/x)-3/2*a*c^2*(-c^2*d*x^2+d)^(1/2)*d-b*(-d*(c^2*x^2-1))^(1/2)*c^4*d/(c*x+1)/(c*x-1)*arccosh(c*x)*x
^2+b*(-d*(c^2*x^2-1))^(1/2)*c^3*d/(c*x+1)^(1/2)/(c*x-1)^(1/2)*x+1/2*b*(-d*(c^2*x^2-1))^(1/2)*c^2*d/(c*x+1)/(c*
x-1)*arccosh(c*x)-1/2*b*(-d*(c^2*x^2-1))^(1/2)*d/x/(c*x+1)^(1/2)/(c*x-1)^(1/2)*c+1/2*b*(-d*(c^2*x^2-1))^(1/2)*
d/x^2/(c*x+1)/(c*x-1)*arccosh(c*x)-3/2*I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(
1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*c^2*d+3/2*I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccos
h(c*x)*ln(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*c^2*d-3/2*I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1
/2)*dilog(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*c^2*d+3/2*I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1
/2)*dilog(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*c^2*d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, {\left (3 \, c^{2} d^{\frac {3}{2}} \log \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {d}}{{\left | x \right |}} + \frac {2 \, d}{{\left | x \right |}}\right ) - {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} c^{2} - 3 \, \sqrt {-c^{2} d x^{2} + d} c^{2} d - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}{d x^{2}}\right )} a + b \int \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^3,x, algorithm="maxima")

[Out]

1/2*(3*c^2*d^(3/2)*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x)) - (-c^2*d*x^2 + d)^(3/2)*c^2 - 3*sq
rt(-c^2*d*x^2 + d)*c^2*d - (-c^2*d*x^2 + d)^(5/2)/(d*x^2))*a + b*integrate((-c^2*d*x^2 + d)^(3/2)*log(c*x + sq
rt(c*x + 1)*sqrt(c*x - 1))/x^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^3,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))/x**3,x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*acosh(c*x))/x**3, x)

________________________________________________________________________________________